Shape Functions and Convergence Criterion of Finite Element Method
نویسندگان
چکیده
منابع مشابه
Cover interpolation functions and h-enrichment in finite element method
This paper presents a method to improve the generation of meshes and the accuracy of numerical solutions of elasticity problems, in which two techniques of h-refinement and enrichment are used by interpolation cover functions. Initially, regions which possess desired accuracy are detected. Mesh improvment is done through h-refinement for the elements existing in those regions. Total error of th...
متن کاملTime-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions
This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...
متن کاملElement-Free Galerkin Method: Convergence of the continuous and discontinuous shape functions
We consider numerical solutions of second-order elliptic partial di erential equations, such as Laplace's equation, or linear elasticity, in two-dimensional, non-convex domains by the element-free Galerkin method (EFG). This is a meshless method, in which the shape functions are constructed by using weight functions of compact support. For non-convex domains, two approaches to the determination...
متن کاملSolution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کاملConvergence of an adaptive finite element method on quadrilateral meshes
We prove convergence and optimal complexity of an adaptive finite element algorithm on quadrilateral meshes. The local mesh refinement algorithm is based on regular subdivision of marked cells, leading to meshes with hanging nodes. In order to avoid multiple layers of these, a simple rule is defined, which leads to additional refinement. We prove an estimate for the complexity of this refinemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Japan Society of Mechanical Engineers
سال: 1976
ISSN: 0029-0270,2185-9485
DOI: 10.1299/kikai1938.42.3386